If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x=53
We move all terms to the left:
3x^2+4x-(53)=0
a = 3; b = 4; c = -53;
Δ = b2-4ac
Δ = 42-4·3·(-53)
Δ = 652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{652}=\sqrt{4*163}=\sqrt{4}*\sqrt{163}=2\sqrt{163}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{163}}{2*3}=\frac{-4-2\sqrt{163}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{163}}{2*3}=\frac{-4+2\sqrt{163}}{6} $
| (3x+4)+(2x+1)=0 | | x/9+8=15 | | 3-2(a+3)=12 | | 12y+31=139 | | 33=-4d+9 | | 1/5x+3=16 | | 8+3w+W=-3 | | (3x+1)/(6x+7)=0 | | t÷6-6=9 | | 4=x8(4+4) | | 5(3x+4/5)=65 | | (x+3)/2=x-4/5 | | 25{x-3}=24 | | 7(2y+3)=35 | | 7(5+x)=20 | | 6y=-2y+24 | | 7-12y=4y+39 | | m=24÷3 | | 7p=5p | | 2(7x-6)=3(1+3×) | | 2(5x+7)=3(7+×) | | 5(3x+4)=12+7× | | 3(5v-11)=-15 | | 3z/7-5=-6 | | n(n-1)=57 | | 4-(3a-5)=6-(2a+7) | | 4xx=20x@ | | 6x/6+x=4 | | 13x+80=300 | | 3(2a-5)=6+2(a-3) | | 8=0.4x+7.5 | | 2/3(180-x)=180 |